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Chapter 1

Telemac-2D and 3D: positive
depths on dry zones

1.1 Principle

The problem of negative depths in Telemac-2D and 3D has always been the price to
pay to have fast and implicit schemes, whereas explicit techniques such as the �nite
volume option with kinetic schemes were able to ensure a positive depth, but at a
considerably higher computer time, due to much smaller time steps. To cope with
negative depths, a speci�c smoothing algorithm had been designed, with sometimes
a well-known drawback e¤ect: water slowly creeping above dykes when they were
discretized with too few points. We now present another solution which consists of
limiting the �uxes between points. It is actually a post-treatment which ensures both
mass-conservation and positivity of depth. The continuity equation in the sense of
�nite volumes (e.g. as transmitted to Delwaq) is still ensured, the continuity equation
in the sense of �nite elements is spoiled because the original velocities are not changed
accordingly to the new depths.
The main idea is summed up here and consists of 3 steps:

� The �uxes between points are computed. We use here the ideas of LeoPostma,
already implemented in the interface to Delwaq.

� Starting from depths at time n, water corresponding to the �uxes are transferred
between points, provided that the depth remains positive, otherwise the �uxes
are locally limited (�uxes which are not used are kept for a further iteration).
This is done in a loop over triangle edges, which can be repeated until there is
no more possible water to transfer.

� The remaining �uxes are left over.

We shall now get into the details of the technique. We start from the 2D continuity
equation:

hn+1 � hn
�t

+ div(hprop
�
�u
�!u n+1 + (1� �u)�!u n

�
) = Sce
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where Sce stands for the discharge sources at points (culverts and so on). This
equation is discretized in the following matrix form:

M

�t
(Hn+1 �Hn) +BM1 U +BM2 V = RHS (1.1)

whereM is the mass-matrix and �t the time-step. RHS is a right-hand side account-
ing for the boundary �uxes (stemming from an integration by part of the divergence
term) and the source terms stemming from Sce. If we use mass-lumping (it will be
mandatory here), this will give for every degree of freedom i:

Si
�t
(hn+1i � hni ) + (BM1 U +BM2 V �RHS)i = 0 (1.2)

where Si =
Z



	i d
 is the area of the �nite volume around point i, and also what we

call the volume of basis i. Options like the wave equation and the speci�c treatment
of the free surface gradient (keyword "free surface gradient compatibility") also �t
within this framework, at the cost of changing U and V into modi�ed velocities which
may be partially treated as piece-wise constant. These modi�ed velocities are denoted
UDEL and V DEL in Telemac (because they are used by the interface to Delwaq).
The quantity:

(BM1 U +BM2 V �RHS)i
can be interpreted as the �ux leaving point i. It includes source terms and �uxes at
the boundaries, which are in RHS. The terms:

BM1 U +BM2 V

at element level are:

�eli = �
Z



h�!u :��!grad(	i) d
 (1.3)

and we have explained in references [2] and [3] how to transform them into �uxes
between points, so that the complete continuity equation becomes:

Si
�t
(hn+1i � hni ) +

X
j

�ij + bi = Scei (1.4)

where bi are the �uxes at the boundaries (denoted FLBOR in Fortran sources). Note
also that term Scei=Si is SMH in Telemac-2D Fortran sources. We have now:

hn+1i = hni �
�t

Si

0@�Scei +X
j

�ij + bi

1A (1.5)

We have �ij+�ji = 0 and in what follows, as we shall look at �uxes segment after
segment, only the positive �ij will be considered, otherwise �uxes would be treated
twice.
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1.2 Limiting internal �uxes

Let us �rst deal with �uxes between points, regardless of other boundary and source
terms. Starting from hn we want to construct a new depth at time n + 1, and the
depth "in construction" is denoted here eh. In a loop over all segments, we get every
time a speci�c i and j (apices of the segment), and we would like to apply the formula:

ehi replaced by ehi � �t
Si
�ij (1.6)

ehj replaced by ehj + �t
Sj
�ij (1.7)

but there is a risk of negative ehi. If there is a risk, i.e. if �ij > Si ehi
�t , then the �ux is

limited by a factor:

� =
Si ehi
�ij�t

We then do:

ehi replaced by ehi � ��t
Si
�ij (1.8)

ehj replaced by ehj + ��t
Sj
�ij (1.9)

which ensures the conservation of water, and:

�ij replaced by (1� �)�ij
which stores in �ij the �ux that has not yet been taken into account (it is likely to
be used in the next loop over all segments).
Then this loop over all segments is repeated with the remaining �ij . This is the

key point!
After a number of iterations, the situation remains unchanged, i.e. a criterion

like
X

abs(�ij) is no longer decreasing. The remaining �ij are then left over as non
physical because they would lead to negative depths. The parts of �uxes which have
been duly transferred may be transmitted to the Delwaq so that they are taken into
account to form a perfect continuity equation with depths and �uxes in accordance.

1.3 Boundary and source terms

Boundary and source terms are not likely to be interpreted in terms of �uxes between
points. Moreover a sink term may lead to negative depths, which brings in fact a
speci�c CFL number for the time step. We have applied the following algorithm:

� Step 1: taking into account the source and boundary terms bringing water (the
depths are increased).

� Step 2: applying the limitation of internal �uxes described above, this leads to
positive depths.
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� Step 3: taking into account the source and boundary terms removing water (the
depths are decreased).

Step 3 may raise problems, thus a limiting factor of the source terms or boundary
terms may be applied also at this level.

1.4 Extension to 3D

Horizontal �uxes

The extension to 3D raised a priori little di¢ culty. When the wave equation option is
used (i.e. the only option left in version 6.0) the shallow water continuity equation is
solved �rst and we can work on it as it has been described above. The only di¤erence
is that the compatible 2D depth averaged velocity �eld is not known, as we work on
3D velocity �elds and then do the integration on depth at the discrete level. The �uxes
are thus �rst computed in 3D, then assembled on the vertical. Instead of computing
�uxes with equation 1.3, we compute in 3D:

�eli = �
Z



�!u :��!grad(	i) d


without assembling the element by element �uxes, and add them on the vertical,
to get non assembled �uxes on triangles. For every layer of 3D elements, the con-
tributions of the 6 points of a prism are added on the 3 points of a triangle in the
following way:

� 3D points 1 and 4 on 2D point 1

� 3D points 2 and 5 on 2D point 2

� 3D points 3 and 6 on 2D point 3
then we can compute the �uxes between 2D points as already explained.

Vertical velocities

� A posteriori, a new di¢ culty appeared. In 3D, the horizontal �uxes (computed
in the transformed mesh) are used to compute the vertical velocities in the
transformed mesh. The horizontal �uxes must then be strictly compatible to the
depth. As we limit only the point to point �uxes and not the original advecting
�eld, there is an error here that could translate into wrong vertical velocities.
The solution consisted of replacing the element by element horizontal �uxes
by edge by edge horizontal �uxes to compute the internal �uxes (array called
FLUINT in Telemac-3D). The edge by edge �uxes can be limited, provided that
the 2D limiting coe¢ cient has been kept. This 2D limiting coe¢ cient (called
FLULIM) is given per 2D segment and is applied for all planes on the vertical.
This is done in subroutine FLU3DLIM.
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1.5 Domain decomposition in parallelism

The algorithm raises an important problem in parallelism with domain decomposition.
During the loop on all segments which changes the depths under construction, these
changes, if done on an interface point, should be immediately transmitted to the
relevant neighbouring sub-domains. This has been considered a too heavy way to
proceed. So far we resorted to the following procedure: the depths of interface points
are merely shared between processors (structure MESH%FAC%R, the inverse of the
number of sub-domains a point belongs to, used for parallel dot products, is available
for this). This means that if a point belongs to 2 sub-domains, the loop on segments
will start locally with half the real depth. All sub-domain will ensure the positivity
of their part of depth. The modi�ed depths will then be summed after the loop (this
also ensures the digit-to-digit equality of depths). Tests show that in this way we have
also a convergence of the algorithm, but slower. It is important here that the �uxes
used are not assembled (other sub-domains are ignored when they are built). The
parallel assembly is in fact done when the depths are summed on interface points.
It could be that the algorithm is hindered by the fact that �uxes are not assembled.

For example, on either side of an interface segment �uxes could be opposite and sum
to 0, which is easier to avoid negative depths. In fact any combination of �uxes
that have the same sum when assembled should work, but maybe with a di¤erent
e¢ ciency. We have eventually chosen to take the average on either side. This seems
consistant with the fact that we share the depth, and it will become mandatory with
tracers, because the sign of the �ux will give the way to do the upwinding. A speci�c
subroutine "mult_interface_segments" has been designed for this. Tests show that
there is no overcost, which, given that it costs an extra parallel communication, is a
hint that it speeds up the rest of the process.

1.6 Tests and applications

1.6.1 The Malpasset dam break

With Telemac-2D:

Figure 7.1 compares the previous smoothing algorithm and the one presented here,
in scalar mode and in parallel mode with 16 processors. The computation is done on
a Unix HP C3700 with a frequency of 750 MHz and on a Dell Linux machine with 2
processors. For the sake of simplicity the 16 processors have only been simulated as
16 di¤erent runs on a single HP workstation.

smoothing �ux correction kinetic scheme
HP C3700 750 MHz 133 s 168 s > 6 hours
Dell (Calibre 5) 1 processor 60 s 68 s 2 h 32�18"
Dell (Calibre 5) 2 processors 44 s 50 s no parallelism

Table 1.1: computer times with the Malpasset dam break test-case

Table 1.1 gives the computer times of di¤erent options and machines with 1 or 2

6



processors. Kinetic schemes have also been tested, as an alternative to get positive
depths, but the times are much higher, due to the fact that it is an explicit scheme
with a CFL limitation which leads to time steps sometimes 100 times smaller than
the 4 s used on �nite element side. On Figure 7.1 a threshold of 1 cm has been chosen
for displaying depths. This allows a fair comparison of inundation extents. What is
then not seen in the �gure at the top (smoothing) is the fact that depths of -0.11 m
are observed in the results. The -1 mm line extends far from the normally �ooded
area, due to the number of smoothings applied. Another important point is that
due to truncation errors, the smoothing algorithm starts working also for the water
at rest in the sea. At the end of the computation, a boundary point o¤shore which
should have a depth of 20 m has only 19.9994 m. This is negligible but may lead to
noticeable di¤erences in long term computations. The new algorithm suppresses all
these drawbacks. The mass conservation is excellent in both cases. The water volume
lost with smoothing is -1858.743 m3, and it is 0.298 10�7 m3 with �ux correction. If
we use an exact solver for linear systems, the error becomes respectively 0.596 10�7

m3 (computer time 217 s) and -0.11 10�6 m3 (computer time 276 s).

With Telemac-3D

The behaviour is quite comparable to what is obtained in 2D, the computer times
obtained with the 2-plane case are given in Table 1.2.

smoothing �ux correction
HP C3700 750 MHz 769 s 768 s
Dell (Calibre 5) 1 processor 341 s 361 s
Dell (Calibre 5) 2 processors 238 s 252 s

Table 1.2: computer times with the Malpasset dam break test-case

The di¤erence of computer time is not signi�cant.
Again with the smoothing option, the total mass lost at the end of the compu-

tation is -143.8726 m3, whereas with positive depths it is -0.59 10�7 m3, the solver
relative accuracy being 10�6. If we use an exact solver for linear systems, it becomes
respectively -0.29 10�7 m3 (computer time 822 s) and -0.298 10�7 m3 (computer time
850 s). We have thus the same behaviour than in 2D and the explanation is the
following: the �ux correction algorithm recomputes the depth with the continuity
equation. In the original continuity equation, which is the wave equation, we have
to solve a linear system with a matrix that contains a Laplacian, due to the implicit
treatment of the free surface gradient stemming from the momentum equation. Then
this free surface gradient is incorporated in the advection �eld and is thus explicit, the
matrix becomes a diagonal (mass-lumping is mandatory). The resulting continuity
equation is thus much simpler to solve in an exact way. The conclusion is that when
this �ux correction is applied, the continuity equation is exactly solved, whatever the
accuracy asked for the initial linear system. Consequently, even if there is no tidal
�at, the algorithm will have an e¤ect on depth to get an exact continuity equation.
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1.6.2 The Wesel river

With Telemac-2D

This river hydraulics case, a steady state �ow, was provided by the BAW Karlsruhe. It
is numerically speaking very tough, with very high Courant numbers (time steps of 2
minutes) and a locally highly re�ned mesh (17340 elements) including many groynes.
There are 360 steps in the computation. Table 1.3 summarizes the minimum depth
and computer times for 3 techniques, including masking of dry elements. These masked
elements may contain hidden negative depths which reappear in the post-treatment,
as is the case here. Note that the smoothing technique manages to limit the negative
depths at -1 cm. Figure 7.2 shows the water depth in a small part of the domain, the
smoothing technique and the �ux correction give very similar results. The di¢ culty of
the problem shows in the computer time of the �ux correction technique. 12 iterations
are necessary here. The minimum depth to be corrected is -0.22 m. The initial sum
of absolute values of all �uxes is 337119.13 m3/s. At the end of the process 6.67 m3/s
only are discarded as generating negative depths.

minimum depth computer time (HP C3700)
smoothing - 0.01 m 42 s

�ux correction 0 m 65 s
masking - 0.085 m 43 s

Table 1.3: minimum depth and computer time on the Wesel test-case

With Telemac-3D

A remaining problem is that this test-case does not work properly in 3D, unless the
time step is reduced to 50 s instead of 100 s, and with a di¤usion of 2 m2/s, whereas the
smoothing depth option works without di¤usion. Large horizontal velocities appear
on groynes, i.e. in highly re�ned zones, and we notice a sensitivity to the constant
chosen to change �nite element �uxes into �nite volume �uxes. This is exempli�ed
in Figure 7.3 which shows the velocity �eld near a groyne in red, with the underlying
free surface elevation in colored surfaces. The conclusion is di¤erent from the case
with tracers in 2D, where Leo Postma�s constant was the best.

1.7 Discussion

It is worth noticing that this algorithm may be applied also when there is water
everywhere. In this case we may have also a temporary limitation of �uxes during
the iterations (especially with large Courant numbers) but eventually all the �uxes
should be accepted. A test

X
abs(�ij) = 0 has thus been added to the cases that

stop the iterations.
Another point is that it is very amazing to see that there is no speci�c CFL

limitation of the process, which is on the contrary a strong limitation of explicit
schemes. The price to pay is in the iterations, but it happens that it is much less
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restrictive than real explicit schemes when they want to ensure positive depths. This
fact will occur again in the next chapter.
It seems easy at �rst sigh to extend this technique to 3D, as the continuity equation

is broadly the same. As a matter of fact the smoothing of negative depths was also
used in 3D without extra problems.
Last but not least: the extension to 3D is straightforward as it works on the same

continuity equation.
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Chapter 2

Sisyphe: the positive depths
algorithm applied to non
erodable beds

The Exner equation in Sisyphe, for bed-load transport, is formally similar to the
Saint-Venant continuity equation as it reads:

@Zf
@t

+ div(
�!
Qs) = 0

where Zf is the bottom and
�!
Qs the solid discharge. When there are non erodable

beds, a new constraint is that Zf must not be lower than Zr, the elevation of non
erodable bed. So far non erodable beds were dealt with by an a priori treatment of�!
Qs ensuring the required property. A limitation factor g for div(

�!
Qs) was �rst com-

puted, then a second limiting factor f was deduced such that div(f
�!
Qs) < g div(

�!
Qs),

and the form div(f
�!
Qs) was eventually used in Exner equation, thus ensuring mass

conservation (see reference [6]). This was however a rather tedious procedure. We
now consider that Zf � Zr is an available layer of sediment, that must not become
negative, the new equivalent equation is:

@(Zf � Zr)
@t

+ div(
�!
Qs) = 0

with the same constraint than the water depth for Zf � Zr. In the variational
formulation the term div(

�!
Qs) is integrated by parts and thus split into boundary

�uxes and internal �uxes. These internal �uxes can be tranformed into point to
point �uxes like in previous chapter, then the problem is exactly like moving water
between points, the sediment replaces water. For graded sediment, each class has its
own layer (which in Sisyphe is a product AVAIL * ELAY) and it leads to a series of
problems where every layer must remain positive. With a saturated bed load equation,
discarding some �uxes is even more natural than with the Saint-Venant continuity
equation. As a matter of fact, the solid discharge is only a potential discharge that
assumes that sediment is available for movement. When there is no sediment, it is
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normal to ignore that �ux. Iterations are necessary, just in case sediment is brought
within the time step to a point that was previously bare. Figure 7.4 compares the
old and the new technique on a Sisyphe schematical test-case. Sediment in a square
hole is washed away by the �ow. No limitation is prescribed on the bed slope here so
the heap of sediment is not very physical, but shows the similar behaviour of both
techniques which, given their very di¤erent approach, is a good cross-validation. In
this example the new technique is much faster.
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Chapter 3

Telemac-3D: a �nite volume
advection solver

The main idea is to design an advection solver close to what is done with the dis-
tributive scheme, i.e. with a splitting of time to ensure the CFL condition, with the
only modi�cation that the �uxes taken into account are not the �nite element �uxes,
but rather the �nite volume point to point �uxes which are currently built for the
Delwaq interface and for the treatment of negative depths in 3D. In 3D and with dis-
tributive schemes (full explanations on distributive schemes are given in reference [1]
from page 183 on) we just recall here that we end up in a discretization of advection
equation in the form:

Si(
Cn+1i � Cni

�t
) = ��i�T (3.1)

Where Si is the integral of the test function of point i, �i is a distribution coe¢ -
cient, �t the time step, Cn+1i the value of function C at point i after advection, Cni the

value of function C at point i before advection. �T actually represents Si(
�!u :��!grad(C))

where �!u is the advecting �eld. The only thing to know here is that �i�T is eventually
put in the form:

�i�T =
X
j

�ij(Ci � Cj) (3.2)

where the coe¢ cients �ii are zero and all coe¢ cients �ij are positive or zero. The
sum is done on all the neighbouring points of point i, i.e. all the points that belong
to an element containing i.
The �nal value of function C at point i is thus:

Cn+1i = Cni

0@1�X
j

�ij
�t

Si

1A+X
j

�t

Si
�ijC

n
j (3.3)

Classically, it is said then that the monotonicity criterion consists of ensuring that
all the coe¢ cients of fni and f

n
j be positive, which yields, given the fact that all �ij

are positive or zero:
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�t � SiP
j

�ij
(3.4)

In �nite volumes with �uxes between points, the corresponding equation would
be:

Cn+1i =

0@1� �t
Si

X
j

max(�ij ; 0)

1ACni +X
j

�t

Si
max(�ij ; 0)C

n
j

assuming that we start from element by element �uxes in the form:

�eli =

Z



�!u :��!grad(	i) d


this explains the di¤erence of signs with what was done in 2D where we start from
�uxes in the form:

�eli = �
Z

2d

h�!u :��!grad(	i) d(
2d)

which are �uxes leaving points. This leads us to the following CFL condition:

�t � SiP
j

max(�ij ; 0)
(3.5)

Implementation should be the same provided that we change everywhere �ij by
max(�ij ; 0).
In fact, the distributive scheme implementation in subroutine murd3d.f in Telemac

only uses
P
j

�ij(C
n
j � Cni ) which is array TRA02 and �

P
j

�ij which is put in array

DB. A �nite volume upwind scheme can then be easily implemented if we take:

DB = �
X
j

max(�ij ; 0)

and

TRA02 =
X
j

max(�ij ; 0)(C
n
j � Cni )

Starting from the coe¢ cients �eli (six per element), the point to point coe¢ cients
�ij are obtained as is done in the interface to Delwaq, i.e.:
1) assembling element by element �uxes on points: horizontal �uxes will be a sum

of two contributions (from the upper and lower layer, except on the bottom and the
free surface).
2) changing the horizontal �uxes of points 1, 2, and 3 in the prism into point to

point �uxes.
Points 1 and 2 are done in a subroutine called �uxv�eo_3d, which calls the 2D

subroutine �uxv�eo.f
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3) cancelling all crossed �uxes (between points 1 and 5, 1 and 6, 2 and 4, 2 and 6,
3 and 4, 3 and 5)
4) �nding the vertical �uxes that solve the continuity equation. Comparing what

is done in subroutine tridw2.f and in subroutine tel4del.f, we �nd that the vertical
�uxes are such that:

�ij = ��z W �
Z

2d

	kd(
2d)

where �ij is the vertical �ux between to points i and j located in the same prism,
on the vertical of the 2D point k. On a total of 15 possible �uxes in the prism, we
thus retain 9 non-zero terms, which is exactly what is done also with the N-scheme,
with the same vertical �uxes. Both schemes are actually very close, though di¤erent,
and it was very easy to add the new �nite volume scheme as a variant of distributive
scheme, in subroutine murd3d.f. Figure 7.5 compares the 3 available options on the
test-case of the lock-exchange.
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Chapter 4

Telemac-2D and 3D: new
advection schemes designed
for tidal �ats

4.1 Principle

The upwind explicit �nite volume scheme was the only one in Telemac-2D to ensures
mass conservation of tracers in the sense of depth-averaged concentrations or tem-
peratures. This scheme could not be used so far with tidal �ats because there is a
division by the depth in the derivation, and the CFL number tends to in�nity on dry
zones. We had then to resort to a masking of dry elements, along with a clipping of
depth, which was not mass-conservative. The �ux correcting technique presented in
the �rst chapter leads in fact straightforwardly to a new advection scheme which is
not sensitive to dry zones.
In the reference [3] we have presented the upwind explicit �nite volume advection

scheme. With the same notations as in Chapter 1, the new concentrations at a point
i were given by the formula:

Cn+1i = (1 +
�t

hn+1i Si

X
negative �ij

�ij) C
n
i �

�t

hn+1i Si

X
negative �ij

Cnj �ij (4.1)

The monotonicity condition was that:

�t <
hn+1i SiP

negative �ij

j�ij j
(4.2)

which may turn into 0 on dry zones. The reason is that the inputs and outputs on one
point may result in a negative or zero depth, while the remaining quantity of tracer
may not be zero. The fundamental reason is that all �uxes to and from a point are
considered at the same time. Imagine now that we do it edge by edge, thus considering
only two points at a time. Let us number these points 1 and 2 and let us assume that
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the �ux �12 is positive, i.e. the water goes from point 1 to point 2. The conservative
tracer equations of both points read simply (we omit boundary and source terms for
simplicity):

S1
�t
(hn+11 Cn+11 � hn1Cn1 ) + �12Cn1 = 0 (4.3)

S2
�t
(hn+12 Cn+12 � hn2Cn2 )� �12Cn1 = 0 (4.4)

Cn1 appears in both equations because the �ux goes from 1 to 2 (upwind scheme).
If we also treat the continuity equation only for this edge (what we do in the �ux
limiting algorithm), we have also:

hn+11 = hn1 �
�t

S1
�12

hn+12 = hn2 +
�t

S2
�12

It then turns out that equations 4.3 and 4.4 become simply:

Cn+11 = Cn1 (4.5)

Cn+12 =
hn2
hn+12

Cn2 + (1�
hn2
hn+12

)Cn1 (4.6)

In this context there is no risk of division by 0 because we started from a positive
depth hn2 which was increased by the positive quantity

�t
S2
�12. hn2=h

n+1
2 is then in

the range [0; 1]. The positivity and monotonicity of tracers is ensured even on dry
zones (in case of zero depth the concentrations remain unchanged). This edge by edge
treatment (only a few lines of Fortran) may be inserted within the previous tidal �ats
algorithm.

4.2 Domain decomposition in parallelism

We have mentioned in Chapter 1 that the internal �uxes were not assembled in par-
allel, but could be averaged on interfaces, so that the upwinding information is the
same on either sides. This trick is used here for the tracers. However it is not the
only thing to do. Let us assume that a point is shared between 3 processors, a, b and
c. It thus exists in 3 locations in memory, with concentrations Ca, Cb, Cc and depths
ha, hb, hc. At the end of the parallel communication the 3 depths are added so that
every processor gets ha + hb + hc. The relevant conservative merging of concentra-
tions gives the common value of Caha+Cbhb+Cchc

ha+hb+hc
. This is obtained by creating an

array containing the product Ch, and running the parallel communication that adds
contribution of interface points (PARCOM with option 2). The same is done with
h and we then do the division. This is a case where we have a division by a depth,
which is done only if the depth is strictly positive.
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4.3 Extension to Sisyphe

In Sisyphe, the velocity �eld for advection may be corrected by a factor F in the
range [0; 1] to account for the fact that the suspended sediment is concentrated near
the bottom, where the velocity is smaller than the depth-averaged velocity. A special
care is then necessary: the �uxes for computing the positive depths must be done
with the original velocity �eld, which is consistent with the continuity equation. Then
the �uxes to consider for the tracer advection must have the coe¢ cient F . We have
then to come back to the original tracer equations 4.3 and 4.4, which now read:

S1
�t
(hn+11 Cn+11 � hn1Cn1 ) + F �12Cn1 = 0 (4.7)

S2
�t
(hn+12 Cn+12 � hn2Cn2 )� F �12Cn1 = 0 (4.8)

if we assume that �12 is positive and apply upwinding also on the F coe¢ cient. It
gives now:

Cn+11 =

�
hn1
hn+11

+ F1(1�
hn1
hn+11

)

�
Cn1 (4.9)

Cn+12 =
hn2
hn+12

Cn2 + F1(1�
hn2
hn+12

)Cn1 (4.10)

This solution does not ensure monotonicity of point 1, which is a known drawback of
using a corrected velocity �eld. It does not seem practicable here as the interpolation
coe¢ cients may tend to in�nity. A solution could consist of dealing with erosion and
deposition at the same time, in order to get a more physical behaviour. Advection
would be done on the depth-integrated quantity of sediment hC. Then, depending
on the �nal depth, it would be decided if this quantity would remain in the water or
would deposit.

4.4 Extension to 3D

Once �uxes between points are known (this is done in the next chapter for a �nite
volume scheme) there is absolutely no di¤erence between 2D and 3D. In 2D, quantities
like S1h

n+1
1 and S2h

n+1
2 are volumes of water carried by points 1 and 2. In 3D the

volumes carried by points will be simply the integral of test functions (which have
been purposedly called VOLUN and VOLU in Telemac-3D). Note that the sum of all
these volumes is the integral of 1 over the whole domain, hence the total amount of
water. At the beginning of a computation these integrals are VOLUN, when all the
�uxes between points have been transferred they are equal to VOLU. The algorithm
in 3D is otherwise exactly the same as in 2D. This new advection solver may be used
on the velocities, either in 2D or 3D. In this case the continuity equation is not yet
done and the new depth will only be compatible with the advection velocity at the
beginning of the time step, hence it will be only a predictor of the �nal depth.
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4.5 Extension to distributive schemes

In fact the idea may be applied to any advection scheme able to provide point to
point �uxes. This is actually the case of distributive schemes and the procedure could
be extended to the N-scheme without di¢ culty and with similar results. However the
PSI scheme raises an extra di¢ culty. With this latter technique the tracer point to
point �uxes are modi�ed in a way that does not a¤ect the overall contributions to
points. An extreme case occurs when the tracer is constant in space, then no �ux
at all is considered. The compatibility with water �uxes is then lost, so that passing
tracers along with water is no longer possible. Building an edge by edge PSI scheme
thus remains an open problem.

4.6 Tests

4.6.1 Tracer in the bridge piers test-case

Our �rst test has no tidal �ats at all. It is just a comparison of advection schemes to
assess their numerical di¤usion. We use the bridge piers test-case and enter a tracer
with a value of 1 at 3 points in the entrance. The time step is 0.8 s and there are 100
steps in the computation. There is no di¤usion. Six di¤erent results are plotted on
Figure 7.6. On the right are displayed the results given by the upwind explicit �nite
volume scheme, the method of characteristics, and the Positive Streamwise Invariant
distributive scheme. This latter scheme is reputed mass-conservative, but not here
in the context of shallow water equations, because it is applied to the concentration,
which is not the conservative variable. On the left 3 variants of the present scheme,
depending on the choice of the constant to get the element �uxes (see discussion in
reference [3] page 33 and in reference [2]). It happens that the choice of this constant
has dramatic e¤ects. Only with the original solution introduced by Leo Postma do
we get a correct advection scheme, comparable to other schemes. The conservation of
mass (of water and tracer) is ensured at the accuracy of the machine (provided that
direct solvers are chosen). It can be noted that the method of characteristics and the
PSI scheme are less di¤usive.

4.6.2 Thermal plume in tidal conditions

We study here a thermal plume in 2 dimensions, i.e. with depth-averaged temperature,
on the small domain. The boundary conditions, subjected to tidal conditions, are given
by a larger model. For checking the conservation of heat, the di¤usion is removed. As
a matter of fact this step is actually applied on the temperature and is conservative for
this variable, which is not the integral of temperature on the vertical (which is the real
conservative variable). The hot water is released by 16 source points of 10.5 m3/s each
with a velocity of 1.51 m/s towards West, and an increment of temperature of 10.6�C.
There is no exchange with atmosphere. The computation consists of 20000 steps of 50
s each, i.e. 11 days 13 hours 46 mn and 40 s. The total heat (temperature multiplied
by volume) entered in the domain is 0.17808 1010. When the �ow is entering the
domain an increment of temperature of 0 is prescribed. At low tide there are dry zones
everywhere in the domain, including on the boundaries. Figure 7.7 shows the thermal
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plume at the end of the computation, obtained with the method of characteristics,
the PSI scheme, and the present edge by edge �ux correcting scheme. Characteristics
and �ux correction are in broad agreement, though the latter appears to be more
di¤usive. The PSI schemes overestimates temperatures. The �gures of Table 4.1 give
more explanations on the comparison. CPU time is given on a HP C3700 workstation.
Both the PSI scheme and characteristics create an excess of about 20% of heat, but
this excess gets out of the domain in the case of characteristics. It is worth noting that,
to avoid loss or gain of heat, the Dirichlet boundary conditions of temperature are
discarded. Only the correct �uxes are considered. The values observed at boundaries
may thus appear to be slightly di¤erent from prescribed values (this point is also very
important in the Berre lake study).

CPU time min. depth % heat lost �nal heat exited heat
characteristics 5116 s -0.0114 m -19.3 0.467 109 0.166 1010

PSI scheme 5623 s -0.0114 m -17.7 0.836 109 0.126 1010

�ux correction 7202 s 0 m -7 10�11 0.646 109 0.113 1010

Table 4.1: comparing advection schemes on a thermal plume test case

On a 2-core Dell Linux workstation, the CPU time in parallel, for the 3 advection
schemes, is summarized in Table 4.2. As the method of characteristics is already used
for the advection of depth in the momentum equation, it is obviously the most e¢ cient
technique here in terms of computer time, as the advection of tracer is only an extra
interpolation. It is also worth noticing that the �ux correction procedure is done
twice, for simplicity of implementation: once for getting positive depths, once again
for the tracer. It is clear by comparing Table 4.1 and Table 4.2 that the e¢ ciency
of algorithms highly depends on the machine (which is a combination of architecture
+ compiler). On Dell in parallel the PSI scheme and the new scheme have the same
cost.

CPU time with 2 processors on Dell Linux
characteristics 1286 s
PSI scheme 1495 s
�ux correction 1494 s

Table 4.2: comparing advection schemes in parallel

4.6.3 Dam breaks

The 1D dam break exact solution will enable us to show the interest of the new
scheme when applied to the advection of velocities. Figure 7.8 compares the free
surface elevation obtained with the method of characteristics (in red) with the new
scheme (in green). The exact solution is in blue. It appears clearly that the method of
characteristics is hindered by tidal �ats. In this ideal case, the wave front progresses
only with advection. There is no propagation velocity on the front because the depth
is zero.

19



We then tested the Malpasset dam break in 3D, with 2 planes on the vertical.
As in the previous case, the new �nite volume advection solver is applied to velocit-
ies. Figure 7.9 compares the depths after 40 mn, with the method of characteristics
or with the new scheme (which is scheme option 13 for key-words SCHEME FOR
ADVECTION OF VELOCITIES or SCHEME FOR ADVECTION OF TRACERS).
The surprise is the di¤erence which does not appear so large in 2D, but this di¤erence
is in favour of the new scheme, since it is known that the wave reached the sea before
40 mn. As in the 1D example this may be explained by the fact that the method of
backward characteristics is not very good on tidal �ats, since no characteristic on a
tidal �at (thus with no velocity) will go backward to get information on the coming
wave. The di¤erence with 2D results was investigated, and an explanation could be
found and is explained here: in 2D the friction terms in the non conservative mo-
mentum equation are multiplied by a factor 1/h where h is the depth. This depth
was so far taken as the nodal value. In 3D there is no obvious 1/h factor but it is
implicitly hidden in a factor: R


2D
	i d(
2D)R


3D
	i d(
3D)

which stems from the variational formulation of the boundary terms. The di¤er-
ence is that when h is zero in 2D friction becomes in�nite, velocity is cancelled and
it reduces the wave celerity. When h is zero in 3D, the denominator may not be zero
if one neighbour of the given point has a depth, because the volume associated with
the corresponding test function will not be zero. In this case the friction will not be
in�nite and this will ease the wave propagation. This is exempli�ed in Figure 7.10,
where the e¤ect of the new advection scheme is also clear.

4.7 Discussion

The new scheme is perfectly mass-conservative in 2D and 3D, it ensures monotonicity
and is stable on dry zones. Further tests are necessary to assess its numerical di¤usion.
A possible drawback is a sensitivity to the mesh, probably by construction because
we use the edges as a way of transit of tracer. An obvious odd property is that the
result certainly depends on the numbering of edges. A necessary development before
other quantitative tests would be adding the di¤usion step in the depth-averaged
conservative concept. It would simply consist of evaluating di¤usion terms as an
extra advection.
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Chapter 5

FE and FV �uxes: in 2D Leo
Postma scheme is the
N-scheme

The way to get point to point �uxes from �nite element �uxes has already been
discussed in reference [3] (page 29). The problem is not well posed and a constant
must be introduced. In our tests the constant chosen by Leo Postma seemed to give
the best results on the rotating cone test. More recently it became obvious that the
distributive schemes were another way to get the point to point �uxes and the N-
scheme was tested. Though the formulas are at �rst sight very di¤erent, it happens
that the Leo Postma scheme is exactly the N-scheme. We show it hereafter. We keep
the notations of reference [3], recalled in the sketch below (a negative �1 means that
point 1 looses water).
The original Leo Postma formula can be implemented for every element in the

following Fortran-like form (the assembly on segments has been removed to allow a
better understanding):
IF(ABS(�1).GE.ABS(�2).AND.ABS(�1).GE.ABS(�3)) THEN

�12 = - �2
�23 = 0
�31 = �3

ELSEIF(ABS(�2).GE.ABS(�1).AND.ABS(�2).GE.ABS(�3)) THEN
�12 = �1
�23 = - �3
�31 = 0

ELSE
�12 = 0
�23 = �2
�31 = - �1

ENDIF
The N-scheme implementation is now the following:
�12 = MAX(MIN(��1,�2),0.D0) - MAX(MIN(��2,�1),0.D0)

Telemac version 6.0, release notes



1

3

2

Φ23

Φ12

Φ31

Φ1
Φ2

Φ3

Figure 5.1: �uxes from and between points

�23 = MAX(MIN(��2,�3),0.D0) - MAX(MIN(��3,�2),0.D0)
�31 = MAX(MIN(��3,�1),0.D0) - MAX(MIN(��1,�3),0.D0)
To prove the equivalence we �rst remark that we can always consider that point

1 has a positive �1(we could otherwise change the local numbering of points without
changing the result). Then we are left with 3 cases (because the sum of all �uxes is
0):
case 1: �1 > 0 and �2 > 0 and �3 < 0
case 2: �1 > 0 and �2 < 0 and �3 < 0
case 3: �1 > 0 and �2 < 0 and �3 > 0
It is easy (but tedious, headache guaranteed!) to check that both methods will

give:
case 1: �12 = 0 and �23 = �2 and �31 = � �1
case 2: �12 = � �2 and �23 = 0 and �31 = �3
case 3: �12 = �1 and �23 � �3 and �31 = 0
Note that the N-scheme was designed to get positive �uxes, which is the case here.
The N-scheme uses 6 MAX functions and 6 MIN functions.
The Leo Postma method can be reduced to 3 ABS functions and 2 or 4 comparisons

.GE., it is cheaper, but the proof given here could be translated into:
IF(�1.GE.0) THEN

IF(�2.GE.0) THEN
This is case 1

ELSE
IF(�3.GE.0) THEN

This is case 3
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ELSE
This is case 2

ENDIF
ENDIF

ELSE
IF(�2.GE.0) THEN

IF(�3.GE.0) THEN
This is case 4

ELSE
This is case 5

ENDIF
ELSE

This is case 6
ENDIF

ENDIF
This way of writing the tests limits to 3 comparisons .GE. in the worst case

(probably not worth the e¤ort).
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Chapter 6

Telemac-3D: smashed
elements now possible

Up to version 5.9, only smashed elements on tidal �ats or dry zones were treated. The
fact that such elements had no volume precluded the use of �nite-volume like numer-
ical schemes, hence only the method of characteristics could be applied for advection.
It appeared that most of the treatments done in the case of tidal �ats could be applied
also in the case of smashed elements with water above. There is indeed a risk of such
a situation when the generalised sigma transformation is used, and a constant eleva-
tion of planes is prescribed. When the bottom goes above the prescribed elevation of
a plane, a number of elements is smashed and this caused a crash of computations.
To avoid this the parameter DISMIN in subroutine CALCOT guaranteed a minimum
height in the elements. From version 6.0 on, it is now possible to have DISMIN=0.
To be more precise there is now a DISMIN_BOT and a DISMIN_SUR, respectively
for bottom and free surface, and DISMIN_BOT may be 0. The key modi�cation for
achieving is an array of integers IPBOT, of size NPOIN2 (number of points in the 2D
mesh), giving the rank of the last layer with no height. if NPLAN is the number of
planes on the vertical, we have for a 2D point I:
IPBOT(I)=0 if all layers are normal (height greater than 1 mm)
IPBOT(I)=3 if plane 3 and 4 are closer than 1 mm and distance between plane 4

and plane 5 is greater than 1 mm.
IPBOT(I)=NPLAN-1 if all the planes are smashed (case of tidal �ats). NPLAN

is the number of planes.
This new array allowed a number of speci�c treatments listed below:

� Friction is applied at the level IPBOT(I)+1 and all points below.

� In di¤usion all points below the real bottom are treated as Dirichlet points, with
the previous value as prescribed Dirichlet value. After solving the linear system
the points below the real bottom are given the value of the real bottom.

� The Poisson equation for the non-hydrostatic pressure is treated in the same
way as di¤usion.
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A general principle is that points with the same elevation on a vertical must even-
tually have the same physical value, so that no arti�cial in�nite gradient is created.
1 mm is an arbitrary but reasonable choice and once it is done all the tests are on
IPBOT. Figure 7.11 is an example of �ow over a bump with an intermediate plane
(number 4) imposed at the elevation -0.2 (it appears at elevcation -1 on the picture
due to a distortion of 5 on the vertical). On the bump planes 1, 2, 3 and 4 are
superimposed. Because the velocities of superimposed points are the same, only a
single vector appears on the �gure. For this case the new advection scheme for tidal
�ats is used and can deal with elements without volume. Mass conservation of salt is
veri�ed and monotonicity (here salinity between 30 and 40 g/l) is strictly ensured.
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Chapter 7

Telemac-3D: note on the
sigma transformation for
characteristics

The theory behind the vertical displacements in the method of characteristics in 3D
is very tricky and we give hereafter some explanations. The �rst thing to understand
is that the advection equation is solved in a transformed mesh with horizontal planes.
The sigma transformation is used to take into account the movement of the mesh.
As a matter of fact the physical values at a point in the mesh will change due to
advection terms (velocity of �ow) but also due to the movement of the mesh. It
is shown in reference [1] page 21, equation 2.90 that this can be simply taken into
account by an advection in the transformed mesh. One would thus expect that the
vertical displacements when computing the characteristics pathlines are of the form:

�Z� =W ��t

using the transformed coordinates and the transformed velocities, but we �nd in
the implementation the following form:

�z� =W
ZSTAR(IET + 1)� ZSTAR(IET )

�z
�t

were �z is the local real width of the given layer between two planes and ZSTAR
is the transformed elevation of planes (here IET + 1 and IET ) in the transformed
mesh.
The second thing to understand is then that the velocity W provided by telemac-

3D to the subroutine CHARAC is in fact W ��z. This quantity is provided by the
subroutine TRIDW2 and has the dimension of a velocity, it is linked to the real
vertical velocity by the formula:

W =
@z

@t
+ U

@z

@x
+ V

@z

@y
+W � @z

@z�
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where @z
@z� is �z when we apply a sigma transformation that changes a layer of

width �z into a layer of width 1. Our vertical displacements are thus in reality:

�z� =W � @z

@z�
ZSTAR(IET + 1)� ZSTAR(IET )

�z
�t

and ZSTAR(IET+1)�ZSTAR(IET )
�z is here to give the value @z�

@z that retrieves the
wanted formula �Z� =W ��t. At this level we understand that the values of ZSTAR
must correspond to a sigma transformation that changes a layer �z into a layer of
width 1. A solution would be for example that we have ZSTAR(IET)=IET. This
would be simple but this is not exactly what is done.
The third thing to understand:
Actually we are free to apply any correction factor in the vertical displacements

if they are taken into account also in the values of ZSTAR. In other words we can
multiply the coordinates in a layer by any constant without changing the result.
The interest is then that the correction factor ZSTAR(IET+1)�ZSTAR(IET )�z could be a
constant independent of the layer. Then the displacements would keep their meaning
all over the mesh. Otherwise we would have to stop at every plane, and recompute a
new displacement compatible with the new metrics (this is done with the generalised
sigma transformation). The denominator being the real width, our correction factor
will be constant if the values of ZSTAR are proportional to the real z coordinates, for
example if they are the values of the array ZSTAR used for building the mesh, i.e. a
sigma transformation giving the whole 3D mesh a width of 1. For a classical sigma
transformation, we have then:

ZSTAR(IET ) =
IET � 1

NPLAN � 1
where NPLAN is the number of planes. The �nal formula thus mixes two dif-

ferent sigma transformations, one for computing W �, one for the local metrics while
navigating in the transformed mesh, and this is not a mistake.
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Figure 7.1: �ux correction against smoothing of negative depths
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Figure 7.2: a close up view of depths comparing two techniques
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Figure 7.3: in�uence of time step and constant choice in the Wesel test-case
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Figure 7.4: comparing the old and the new technique for non erodable beds
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Figure 7.5: comparison of distributive and �nite volume schemes
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Figure 7.6: comparison of advection schemes on the bridge piers test case
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Figure 7.7: a thermal plume case, comparison of 3 advection schemes, without di¤u-
sion
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Figure 7.8: testing advection solvers applied to velocities
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Figure 7.9: Telemac-3D: comparing advection schemes for velocities in the Malpasset
test-case
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Figure 7.10: Malpasset case with Telemac-2D: e¤ect of advection scheme and friction
term
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Figure 7.11: Telemac-3D: a mesh with planes superimposed on the bottom
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